

Journal of Fluorine Chemistry 84 (1997) 49-51

A trifluoromethyl group directed semipinacol rearrangement: synthesis of α -(trifluoroacetyl) diarylmethanes

Gyula Hornyák ^{a,*}, József Fetter ^b, Gábor Németh ^c, L. Poszávácz ^c, Gyula Simig ^c

^a Research Group for Alkaloid Chemistry of the Hungarian Academy of Sciences, 1521 Budapest, Hungary

^b Department of Organic Chemistry, Technical University Budapest, 1521 Budapest, Hungary

^c Chemical Research Division, EGIS Pharmaceuticals Ltd., P.O. Box 100, 1475 Budapest, Hungary

Received 22 November 1996; accepted 28 February 1997

Abstract

Semipinacol rearrangements of trifluoromethyl substituted vic-diol monomethyl ethers proceeded smoothly to give α -(trifluoroacetyl) diarylmethanes in good yields. The trifluoromethyl group gave specific orientation to the course of the rearrangement. © 1997 Elsevier Science S.A.

Keywords: Pinacol rearrangement; Semipinacol rearrangement; α -(Trifluoroacetyl) diarylmethanes

1. Introduction

In the course of our efforts to explore new trifluoromethylated building blocks [1] we found that treatment of a benzene solution of vic-diol monomethyl ether **1a** with concentrated sulfuric acid at ambient temperature afforded α -(trifluoroacetyl) diphenylmethane **2a** in 87% yield, presumably via a semipinacol rearrangement (Scheme 1) [2– 4]. The term 'semipinacol rearrangement' has come to represent also all 1,2-migrations of 2-hetero-substituted alcohols related to pinacol rearrangement [4].

In this paper we report the synthesis of vic-diol monoethers **1a–1c** containing substituents with various electronic qualities at the p-position of the phenyl ring attached to the secondary carbon and their rearrangement to α -(trifluoroacetyl) diarylmethanes **2a–2c**.

2. Results and discussion

Compounds 1 have been prepared conveniently from the easily available 'Mosher's nitrile' 3 [5] (Scheme 2). Grignard reactions of compound 3 with arylmagnesium bromides afforded ketones 4. Sodium borohydride reduction of ketones 4 gave mixtures of diastereomeric vic-glycol monomethyl ethers **1** (Scheme 2). The reaction conditions employed for compound **1a** were also suitable for the similar transformations of substrates **1b** and **1c** to the corresponding ketones **2b** and **2c**.

The course of the rearrangement can be explained by comparing the stabilities of the possible carbenium ion intermediates (Scheme 3). The tertiary carbenium ion **5** is destabilized by the electron-withdrawing trifluoromethyl group, therefore the formation of the secondary carbenium ion **6** is favored. 1,2-shift of the phenyl group is supposed to be accompanied by simultaneous demethylation of the ether group, thus avoiding the formation of α -trifluoromethyl substituted carbenium ion **7**. A concerted rearrangement of the protonated molecule **8** also cannot be excluded.

To the best of our knowledge this is the first observation of a trifluoromethyl group controlled pinacol type (semipinacol) rearrangement. Furthermore, the reaction sequence discussed represents a convenient synthesis of trifluoroacetylated diarylmethanes from the easily available Mosher's nitrile.

3. Experimental details

The melting points were determined on a Büchi 535 apparatus and are uncorrected. The IR spectra were recorded on an Aspect 2000 computer controlled Bruker IFS-113v vacuum optic FT spectrometer, using KBr pellets for solids or liquid films. The NMR spectra were run on a Bruker WM-

^{*} Corresponding author. Department of Organic Chemistry, Technical University Budapest, 1521 Budapest, Hungary. Phone: +36 1 463 1129; Fax: +36 1 463 3297.

^{0022-1139/97/\$17.00 © 1997} Elsevier Science S.A. All rights reserved *PII* S 00 2 2 - 1 1 39 (97) 00 0 3 1 - 6

250 FT, or a Varian Gemini-200, or a Varian Unity Inova 400 spectrometer. Mass spectra were obtained by EI (70 eV, evaporation temperature 120 $^{\circ}$ C) using a KRATOS MS 902 mass spectrometer.

3.1. Preparation of 3,3,3-trifluoro-2-methoxy-1-aryl-2phenylpropan-1-ones (4): general procedure

In a typical experiment α -trifluoromethyl- α -methoxyphenylacetonitrile (3, 29.0 g, 130 mmol) was added to a solution of phenylmagnesium bromide (prepared from magnesium (4.6 g, 192 mmol) and bromobenzene (17.0 ml, 29.0 g, 135 mmol) in ether (150 ml)) and the mixture was refluxed for 5 h. The solvent was evaporated and the residue was dissolved in ethanol (550 ml). Water (30 ml) and concentrated hydrochloric acid (30 ml) were added and the mixture was refluxed for 5 h. After evaporation of the ethanol, water (90 ml) was added and the pH was adjusted to 8 with aqueous sodium hydroxide (40%) solution. The mixture was extracted with ether $(3 \times 150 \text{ ml})$, the combined ethereal solution was extracted with brine, dried on magnesium sulfate and evaporated. The residual oil was distilled to give 3,3,3trifluoro-2-methoxy-1,2-diphenylpropan-1-one (4a). The physical and spectral data of compounds 4 are shown in Table 1.

3.2. Preparation of 3,3,3-trifluoro-2-methoxy-1-aryl-2phenylpropanols (1): general procedure

In a typical experiment 3,3,3-trifluoro-2-methoxy-1,2diphenylpropan-1-one (4a, 29.7 g, 101 mmol) was dissolved in ethanol (450 ml) and sodium borohydride (17.8 g, 468 mmol) was added to the stirred solution. It was refluxed for 20 min, acidified by addition of aqueous hydrogen chloride solution (10%) to pH 6 and evaporated. Water (600 ml) was added to the residue and the mixture was extracted with dichloromethane $(3 \times 300 \text{ ml})$, treated with charcoal and evaporated to give **1a** (29.6 g, 99%). The product was shown by its ¹H NMR spectrum to be a practically pure 2:1 mixture of the two diastereomers and was subjected to the semipinacol rearrangement without further purification. ¹HNMR (CDCl₃, 200 MHz) & 7.42-6.72 (10H, m), 4.95 (1H, bs), 3.42 and 3.36 (3H, ratio ca. 1:2, $2 \times q$, ${}^{5}J_{HF} = 1.8$ Hz, through space coupling), 3.20 and 3.00 (1H, ratio ca. 1:2, bs); high resolution MS (EI) calculated for $C_{16}H_{15}F_3O_2$ (M⁺) m/z296.1024, found 296.1027.

Compounds **1b** and **1c** were prepared by a similar procedure.

3,3,3-Trifluoro-2-methoxy-1-(4-methoxyphenyl)-2phenylpropanol (**1b**): yield 99%, 4:1 mixture of the two diastereomers. ¹H NMR (CDCl₃, 250 MHz) δ : 7.55–6.55 (9H, m), 4.92 (1H, bs), 3.77 and 3.73 (3H, ratio ca. 1:4, 2×s), 3.46 and 3.42 (3H, ratio ca. 1:4, 2×q, ⁵*J*_{HF}=1.8 Hz, through space coupling), 4.02 and 3.81 (1H, ratio ca. 1:4, 2×d, *J*=6.5 and 5.0 Hz); high resolution MS (EI) calculated for C₁₇H₁₇F₃O₃ (M⁺) *m*/*z* 326.1130, found 326.1123.

3,3,3-Trifluoro-1-(4-fluorophenyl)-2-methoxy-2-phenylpropanol (1c): yield 92%, 3:1 mixture of the two diastereomers. ¹H NMR (CDCl₃, 200 MHz) δ : 7.45–6.75 (9H, m),

$$\begin{array}{c} Ph \\ Ph \\ F_{3}C \\ \hline OMe \end{array} \xrightarrow{CN} \begin{array}{c} 1. \ ArMgBr \\ 2. \ HCl \\ \hline MeO \\ \hline OH \end{array} \xrightarrow{Ph \\ MeO \\ \hline OH \end{array} \xrightarrow{Ph \\ MeO \\ \hline OH \\ \hline H_{2}SO_{4} \\ \hline H_{2}SO_{4} \\ \hline OH \\ \hline OH$$

Table 1 Yields, boiling points, IR, ¹H NMR, ¹³C NMR and high resolution MS spectra of **2** and **4**

2a 84–86 (0.2) 87% IR KBr 1763 ¹ H NMR 400 MHz 7.38–7.17 (10H, m), 5.52 (1H, s) 13°C NMR 50.3 MHz 190.0 (q, ${}^{2}J_{CF}$ = 34 Hz), 135.6, 129.1, 128.9, 128.1, 116.0 13°C NMR 50.3 MHz 190.0 (q, ${}^{2}J_{CF}$ = 34 Hz), 135.6, 129.1, 128.9, 128.1, 116.0 13°C NMR 50.3 MHz 190.0 (q, ${}^{2}J_{CF}$ = 34 Hz), 135.6, 129.1, 128.9, 128.1, 116.0 13°C NMR 50.3 MHz 190.0 (q, ${}^{2}J_{CF}$ = 34 Hz), 57.8 HRMS EI calculated for C ₁₅ H ₁₁ F ₃ O 264.0762, found 264.0753 IR KBr 1730 ¹ H NMR 400 MHz 7.46–7.20 (5H, m), 7.16 (2H, d, J= 8.4 Hz), 6.88 (2H, c, Hz), 5.46 (1H, s), 3.79 (3H, s)) (q,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) (q,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) (q,
2b 108–110 (0.2) 71% HRMS EI calculated for $C_{15}H_{11}F_{3}O$ 264.0762, found 264.0753 IR KBr 1730 ^{1}H NMR 400 MHz 7.46–7.20 (5H, m), 7.16 (2H, d, J=8.4 Hz), 6.88 (2H, c Hz), 5.46 (1H, s), 3.79 (3H, s)	
2b 108–110 (0.2) 71% HRMS EI calculated for $C_{15}H_{11}F_{3}O$ 264.0762, found 264.0753 IR KBr 1730 ¹ H NMR 400 MHz 7.46–7.20 (5H, m), 7.16 (2H, d, J =8.4 Hz), 6.88 (2H, c Hz), 5.46 (1H, s), 3.79 (3H, s)	
2b 108–110 (0.2) 71% IR KBr 1730 ¹ H NMR 400 MHz 7.46–7.20 (5H, m), 7.16 (2H, d, <i>J</i> =8.4 Hz), 6.88 (2H, d Hz), 5.46 (1H, s), 3.79 (3H, s)	
¹ H NMR 400 MHz 7.46–7.20 (5H, m), 7.16 (2H, d, $J = 8.4$ Hz), 6.88 (2H, d Hz), 5.46 (1H, s), 3.79 (3H, s)	
Hz), 5.46 (1H, s), 3.79 (3H, s)	I, J = 8.4
13 C NMR 100.6 MHz 190.0 (q, $J_{CF} = 33.6$ Hz), 159.4, 136.0, 130.0, 129.0, 128	3.7, 128.0,
$127.4, 116.0 $ (q, $J_{CF} = 293.7 $ Hz), $114.5, 57.0, 55.3 $	
HRMS EI calculated for $C_{16}H_{13}F_3O_2$ 294.0868, found 294.0874	
2c 76–78 (0.1) 83% IR KBr 1764	
⁴ H NMR 200 MHz 7.42–7.30 (3H, m), 7.29–7.15 (4H, m), 7.03 (2H, t-like	m, $J = 8.7$
Hz), 5.51 (1H, s)	
13 C NMR 50.3 MHz 189.8 (q, $^{2}J_{CF}$ = 34.4 Hz), 162.6 (d, $^{4}J_{CF}$ = 248 Hz), 135.	4, 131.5
$(d, J_{CF} = 3.4 \text{ Hz}), 130.6 (d, J_{CF} = 8.4 \text{ Hz}), 129.2, 128.8$, 128.3,
$116.0 (q, J_{CF} = 294 Hz), 116.0 (d, J_{CF} = 21.7 Hz), 57.0$	1
HRMS EI calculated for $C_{15}H_{10}F_4O$ 282.0668, found 282.0857	
4a 109–110 (0.1) 7/% IR KBr 16/0	
⁴ H NMR 250 MHz 7.95–7.80 (2H, m), 7.65–7.22 (8H, m), 3.53 (3H, q, $J_{\rm H}$	$_{\rm F} = 1.8$ Hz,
through space coupling)	0.0.107.4
¹³ C NMR 62.9 MHz 193.6, 133.9, 133.8, 133.7, 130.1, 129.5, 128.6, 128.5, 12	8.3, 127.4,
$126.8, 123.7$ (q, $J_{CF}=292$ Hz), 87.0 (q, $J_{CF}=25$ Hz), 126.8 Hz)	56.2
HRMS EI calculated for $C_{16}H_{13}F_{3}O_{2}$ 294.0868, found 294.0869	
4b $128-130(0.2)$ 75% IR KBr 1650	77 (011 1
⁴ H NMR 400 MHz $/.91$ (2H, d, $J = 9.0$ Hz), $/.54$ (2H, m), $/.55$ (3H, m), 6.	77 (2H, d,
$J = 9.0$ Hz), 3.78 (3H, s), 3.55 (3H, q, $^{\prime}J_{HF} = 1.7$ Hz, thr	ough space
	2.0 (
"C NMR 50.3 MHZ 192.0, 163.8, 134.3, 132.6, 129.3, 126.8, 126.8, 120.7, 12	3.8 (q,
$J_{CF} = 291$ HZ), 113.7, 86.8 (q, $J_{CF} = 25$ HZ), 56.0 (q, $J_{HZ})$	$_{\rm CF} = 2.3$
HZ), 53.5 HE C H E O 224.0072 found 224.0074	
HKMS EI calculated for $C_{17}H_{15}F_3O_3$ 524.09/5, found 524.0964	
4c $102-104(0.2)$ 55% IK KBT 1092	
H NMR 200 MHZ 7.91 (2H, dd-like m, $J = 9.2$ and 5.0 HZ), 7.36–7.48 (2H, dd-like m, $J = 9.2$ and 5.0 HZ), 7.36–7.48 (2H, dd-like m, $J = 9.2$ (2H,	m), 7.42–
1.52 (3 H , III), 0.96 (2 H , (11Ke III, $J = 6.7$ HZ), 3.53 (3 H ,	q,
13 CNMP 50.2 MHz 10.2 L 1/5 (0.4 Mz 257 Hz) 122.0 (4 Mz 257 Hz)) II_)
C NMR 50.5 MHZ 192.1, 105.9 (0, $J_{CF}=25$ / HZ), 155.8, 155.0 (0, $J_{CF}=25$ / HZ), 155.8 (15.0) (0, $J_{CF}=25$ / HZ), 155.0 (0, J_{CF}=25)/ HZ, 155.0 (0, $J_{CF}=25$ / HZ), 155.0 (0, J_{CF}=25)/ HZ, 155.0 (0, $J_{CF}=25$ / HZ), 155.0 (0, J_{CF}=25)/ HZ, 155.0 (0, J_{CF}=25)/ HZ), 1	' ПZ), 7 (d
150.1, 129.0, 120.0, 120.0, 120.0, 125.0 (q, JCF=291 HZ), 115	./ (u, Ia)
$J_{CF} = 22 \text{ HZ}, \ 80.8 \text{ (q, } J_{CF} = 25 \text{ HZ}), \ 50.1 \text{ (q, } J_{CF} = 2 \text{ HZ}), \ 50.1 $	1Z)
$\frac{1}{10000000000000000000000000000000000$	

4.97 (1H, bs), 3.47 and 3.40 (3H, ratio ca. 1:3, $2 \times q$, ${}^{5}J_{\rm HF}$ = 1.8 Hz, through space coupling), 3.08 and 2.91 (1H, ratio ca. 1:3, $2 \times d$, J = 7.0 and 2.9 Hz); high resolution MS (EI) calculated for C₁₆H₁₄F₄O₂ (M⁺) m/z 314.0930, found 314.0925.

3.3. Preparation of 1,1,1-trifluoro-3-aryl-3-phenylpropan-2-ones (2): general procedure

In a typical experiment 3,3,3-trifluoro-2-methoxy-1,2diphenylpropanol (**1a**, 29.5 g, 100 mmol, a mixture of two diastereomers, obtained as described above) was dissolved in benzene (250 ml) and concentrated sulfuric acid (16 ml) was added. After 30 min at ambient temperature the mixture was extracted with water (2×50 ml) and brine (50 ml), dried (magnesium sulfate) and evaporated. The residual oil was distilled to give 1,1,1-trifluoro-3,3-diphenylpropan-2one (**2a**). The physical and spectral data of compounds **2** are shown in Table 1.

References

- [1] G. Németh, É. Rákóczy, Gy. Simig, J. Fluorine Chem., 76 (1996) 91.
- [2] C.J. Collins, J.F. Eastham, Rearrangements involving the carbonyl group, in: S. Patai (Ed.), The Chemistry of the Carbonyl Group, Interscience, London, 1966, p. 762.
- [3] M. Bartók, Á. Molnár, Dehydration of diols, in: S. Patai (Ed.), The Chemistry of Functional Groups, Supplement E, Part 2, Wiley, Chichester, 1980, p. 721.
- [4] D.J. Coveney, The Semipinacol and Other Rearrangements, in: B.M. Trost, I. Fleming (Eds.), Comprehensive Organic Synthesis, Vol. 3, Pergamon, 1991, p. 777.
- [5] J.A. Dale, D.L. Dull, H.S. Mosher, J. Org. Chem. 34 (1969) 2543.